Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Eng Lett ; 14(3): 571-582, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38645597

RESUMEN

Intracardiac echocardiography (ICE) enables cardiac imaging with a wide field of view, deep imaging depth, and high frame rate during surgery. However, strong sidelobe and grating lobe artifacts created by the ultra-compact transducer degrade its image quality, making diagnosis and monitoring of treatment difficult. Conventionally, aperture apodization algorithms are often used to suppress sidelobe and grating lobe artifacts at the expense of lateral resolution, which is undesirable in ICE. In this study, we present comparative results of the beamforming methods specifically in ICE application. We demonstrate and compare five nonlinear beamforming algorithms in ICE: nonlinear pth root delay and sum (NL-p-DAS), nonlinear pth root spectral magnitude scaling (NL-p-SMS), delay-and-sum with coherence factors (DAS + SCF), delay and sum with apodization (DAS + apodization) and delay and sum (DAS). Phantom and ex-vivo experiment compare the performance of each algorithm in static and dynamic conditions. DAS + SCF shows the best lateral resolution, and all four algorithms improve the image contrast and sidelobe suppression over conventional DAS. NL-p-SMS stands out for the best axial resolution and suppression of grating lobe artifacts. For motion tracking, NL-p-SMS shows better temporal resolution than other methods. Overall, all the beamforming algorithms other than DAS showed improved image quality. Among them, NL-p-SMS, which has a high temporal resolution, showed the potential for providing more accurate information regards movement tracking. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-024-00352-9.

2.
J Biomed Opt ; 29(Suppl 1): S11528, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38505737

RESUMEN

Significance: Endocavity ultrasound (US) imaging is a frequently employed diagnostic technique in gynecology and urology for the assessment of male and female genital diseases that present challenges for conventional transabdominal imaging. The integration of photoacoustic (PA) imaging with clinical US imaging has displayed promising outcomes in clinical research. Nonetheless, its application has been constrained due to size limitations, restricting it to spatially confined locations such as vaginal or rectal canals. Aim: This study presents the development of a video-rate (20 Hz) endocavity PA/harmonic US imaging (EPAUSI) system. Approach: The approach incorporates a commercially available endocavity US probe with a miniaturized laser delivery unit, comprised of a single large-core fiber and a line beamshaping engineered diffuser. The system facilitates real-time image display and subsequent processing, including angular energy density correction and spectral unmixing, in offline mode. Results: The spatial resolutions of the concurrently acquired PA and harmonic US images were measured at 318 µm and 291 µm in the radial direction, respectively, and 1.22 deg and 1.50 deg in the angular direction, respectively. Furthermore, the system demonstrated its capability in multispectral PA imaging by successfully distinguishing two clinical dyes in a tissue-mimicking phantom. Its rapid temporal resolution enabled the capture of kinetic dye perfusion into an ex vivo porcine ovary through the depth of porcine uterine tissue. EPAUSI proved its clinical viability by detecting pulsating hemodynamics in the male rat's prostate in vivo and accurately classifying human blood vessels into arteries and veins based on sO2 measurements. Conclusions: Our proposed EPAUSI system holds the potential to unveil previously overlooked indicators of vascular alterations in genital cancers or endometriosis, addressing pressing requirements in the fields of gynecology and urology.


Asunto(s)
Diagnóstico por Imagen , Técnicas Fotoacústicas , Porcinos , Animales , Masculino , Femenino , Humanos , Ultrasonografía/métodos , Fantasmas de Imagen , Análisis Espectral , Colorantes , Técnicas Fotoacústicas/métodos
3.
ACS Sens ; 9(3): 1489-1498, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38440995

RESUMEN

Detection of microplastics from water is crucial for various reasons, such as food safety monitoring, monitoring of the fate and transport of microplastics, and development of preventive measures for their occurrence. Currently, microplastics are detected by isolating them using filtration, separation by centrifugation, or membrane filtration, subsequently followed by analysis using well-established analytical methods, such as Raman spectroscopy. However, due to their variability in shape, color, size, and density, isolation using the conventional methods mentioned above is cumbersome and time-consuming. In this work, we show a surface-nanodroplet-decorated microfluidic device for isolation and analysis of small microplastics (diameter of 10 µm) from water. Surface nanodroplets are able to capture nearby microplastics as water flows through the microfluidic device. Using a model microplastic solution, we show that microplastics of various sizes and types can be captured and visualized by using optical and fluorescence microscopy. More importantly, as the surface nanodroplets are pinned on the microfluidic channel, the captured microplastics can also be analyzed using a Raman spectroscope, which enables both physical (i.e., size and shape) and chemical (i.e., type) characterization of microplastics at a single-particle level. The technique shown here can be used as a simple, fast, and economical detection method for small microplastics.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Microfluídica , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Agua/análisis
4.
Adv Sci (Weinh) ; 10(36): e2303966, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37847902

RESUMEN

To combat the irreversible decline in renal function associated with kidney disease, it is essential to establish non-invasive biomarkers for assessing renal microcirculation. However, the limited resolution and/or vascular sensitivity of existing diagnostic imaging techniques hinders the visualization of complex cortical vessels. Here, a 3D renal ultrafast Doppler (UFD) imaging system that uses a high ultrasound frequency (18 MHz) and ultrahigh frame rate (1 KHz per slice) to scan the entire volume of a rat's kidney in vivo is demonstrated. The system, which can visualize the full 3D renal vascular branching pyramid at a resolution of 167 µm without any contrast agent, is used to chronically and noninvasively monitor kidneys with acute kidney injury (AKI, 3 days) and diabetic kidney disease (DKD, 8 weeks). Multiparametric UFD analyses (e.g., vessel volume occupancy (VVO), fractional moving blood volume (FMBV), vessel number density (VND), and vessel tortuosity (VT)) describe rapid vascular rarefaction from AKI and long-term vascular degeneration from DKD, while the renal pathogeneses are validated by in vitro blood serum testing and stained histopathology. This work demonstrates the potential of 3D renal UFD to offer valuable insights into assessing kidney perfusion levels for future research in diabetes and kidney transplantation.


Asunto(s)
Lesión Renal Aguda , Diabetes Mellitus , Nefropatías Diabéticas , Ratas , Animales , Nefropatías Diabéticas/diagnóstico por imagen , Medios de Contraste , Riñón/diagnóstico por imagen , Ultrasonografía Doppler/métodos , Lesión Renal Aguda/diagnóstico por imagen
5.
Nano Converg ; 10(1): 29, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37335405

RESUMEN

Functional photoacoustic imaging is a promising biological imaging technique that offers such unique benefits as scalable resolution and imaging depth, as well as the ability to provide functional information. At nanoscale, photoacoustic imaging has provided super-resolution images of the surface light absorption characteristics of materials and of single organelles in cells. At the microscopic and macroscopic scales. photoacoustic imaging techniques have precisely measured and quantified various physiological parameters, such as oxygen saturation, vessel morphology, blood flow, and the metabolic rate of oxygen, in both human and animal subjects. This comprehensive review provides an overview of functional photoacoustic imaging across multiple scales, from nano to macro, and highlights recent advances in technology developments and applications. Finally, the review surveys the future prospects of functional photoacoustic imaging in the biomedical field.

6.
Chem Rev ; 123(11): 7379-7419, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-36642892

RESUMEN

For decades now, photoacoustic imaging (PAI) has been investigated to realize its potential as a niche biomedical imaging modality. Despite its highly desirable optical contrast and ultrasonic spatiotemporal resolution, PAI is challenged by such physical limitations as a low signal-to-noise ratio (SNR), diminished image contrast due to strong optical attenuation, and a lower-bound on spatial resolution in deep tissue. In addition, contrast-enhanced PAI has faced practical limitations such as insufficient cell-specific targeting due to low delivery efficiency and difficulties in developing clinically translatable agents. Identifying these limitations is essential to the continuing expansion of the field, and substantial advances in developing contrast-enhancing agents, complemented by high-performance image acquisition systems, have synergistically dealt with the challenges of conventional PAI. This review covers the past four years of research on pushing the physical and practical challenges of PAI in terms of SNR/contrast, spatial resolution, targeted delivery, and clinical application. Promising strategies for dealing with each challenge are reviewed in detail, and future research directions for next generation contrast-enhanced PAI are discussed.


Asunto(s)
Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Análisis Espectral
7.
Biomed Opt Express ; 14(1): 89-105, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36698663

RESUMEN

Photoacoustic (PA) imaging is a high-fidelity biomedical imaging technique based on the principle of molecular-specific optical absorption of biological tissue constitute. Because PA imaging shares the same basic principle as that of ultrasound (US) imaging, the use of PA/US dual-modal imaging can be achieved using a single system. However, because PA imaging is limited to a shallower depth than US imaging due to the optical extinction in biological tissue, the PA signal yields a lower signal-to-noise ratio (SNR) than US images. To selectively amplify the PA signal, we propose a switchable preamplifier for acoustic-resolution PA microscopy implemented on an application-specific integrated circuit. Using the preamplifier, we measured the increments in the SNR with both carbon lead and wire phantoms. Furthermore, in vivo whole-body PA/US imaging of a mouse with a preamplifier showed enhancement of SNR in deep tissues, unveiling deeply located organs and vascular networks. By selectively amplifying the PA signal range to a level similar to that of the US signal without contrast agent administration, our switchable amplifier strengthens the mutual complement between PA/US imaging. PA/US imaging is impending toward clinical translation, and we anticipate that this study will help mitigate the imbalance of image depth between the two imaging modalities.

8.
Anal Sens ; 2(1)2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37621644

RESUMEN

Photoacoustic (PA) imaging relies on the absorption of light by chromophores to generate acoustic waves used to delineate tissue structures and physiology. Here, we demonstrate that Cu(II) efficiently catalyzes the dimerization of diverse near-infrared (NIR) cyanine molecules, including a peptide conjugate. NMR spectroscopy revealed a C-C covalent bond along the heptamethine chains, creating stable molecules under conditions such as a wide range of solvents and pH mediums. Dimerization achieved >90% fluorescence quenching, enhanced photostability, and increased PA signals by a factor of about 4 at equimolar concentrations compared to the monomers. In vivo study with a mouse cancer model revealed that dimerization enhanced tumor retention and PA signal, allowing cancer detection at doses where the monomers are less effective. While the dye dimers highlighted peritumoral blood vessels, the PA signal for dimeric tumor-targeting dye-peptide conjugate, LS301, was diffuse throughout the entire tumor mass. A combination of the ease of synthesis, diversity of molecules that are amenable to Cu(II)-catalyzed dimerization, and the high acoustic wave amplification by these stable dimeric small molecules ushers a new strategy to develop clinically translatable PA molecular amplifiers for the emerging field of molecular photoacoustic imaging.

10.
APL Bioeng ; 5(3): 031510, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34368604

RESUMEN

The phthalocyanine (Pc) and naphthalocyanine (Nc) nanoagents have drawn much attention as contrast agents for photoacoustic (PA) imaging due to their large extinction coefficients and long absorption wavelengths in the near-infrared region. Many investigations have been conducted to enhance Pc/Ncs' photophysical properties and address their poor solubility in an aqueous solution. Many diverse strategies have been adopted, including centric metal chelation, structure modification, and peripheral substitution. This review highlights recent advances on Pc/Nc-based PA agents and their extended use for multiplexed biomedical imaging, multimodal diagnostic imaging, and image-guided phototherapy.

11.
J Control Release ; 320: 283-292, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-31982436

RESUMEN

Image-guided therapy, combined with imaging and therapeutic action, forms an attractive system because it can induce outstanding effects at focused locations. However, the conventional liposomes-based system cannot figure in therapeutic or imaging roles themselves, thereby causing the disadvantage of their biological unavailability as a theragnosis tool. Herein, the structure-inherent near-infrared bilayer nanovesicles are fabricated with amphiphilic heptamethine cyanine dye, PEG conjugated heptamethine cyanine dye, and gemcitabine (NEPCG) is developed for the novel photoacoustic image-guided chemo-thermotherapy system. The organic structure-inherent near-infrared bilayer nanovesicles are self-assembled and exhibit a liposome-like bilayer structure. Furthermore, NEPCG showed the high photoacoustic signal (PA) due to the specific accumulation in the tumor site. Delivered NEPCG than displayed concurrent chemotherapy and photothermal therapy (PTT) effects against cancer, triggered by PA imaging with minimal side effects. In vitro and in vivo experiments show that NEPCG can be used as outstanding contrast agents and completely obliterate the tumor without reoccurrence under laser irradiation. Therefore, this work presents the potential for the realization of unprecedented structure-inherent near-infrared bilayer nanovesicles as highly accurate and effective theragnostic tools in clinical fields.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Neoplasias/terapia , Fototerapia
12.
J Minim Invasive Surg ; 23(3): 139-143, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35602387

RESUMEN

Purpose: Gastric subepithelial tumor (GST) is a disease entity that includes all gastric subepithelial lesions. The oncologically safe surgical technique is complete resection with adequate resection margins. Most of the studies about laparoscopic gastric wedge rsection (LGWR) in GST focus on oncologic curability or surgical effectiveness. However, studies on the factors associated with the operation time are rare. Therefore, this study was conducted to analyze and compare the factors associated with the operation time of LGWR. Methods: From 2010 to 2019, 145 consecutive patients undergoing LGWR were reviewed retrospectively. Clinical characteristics of GST and operation time were analyzed and compared. Results: A total of 145 patients was enrolled and reviewed. There were 59 males (40.7%) and 86 females (59.3%) with a mean age of 53.6 years and mean body mass index (BMI) of 23.9 kg/m2. Mean tumor size was 2.9 cm and mean operation time was 66.0 minutes. In statistically, the mean operation time showed significant association with tumor size, BMI, longitudinal tumor location and tumor location between lesser and greater curvature. In multivariate analysis, tumor size, BMI and longitudinal classification of tumor location are statistically significant. Conclusion: A shorter operation time is expected when there is a small tumor, low BMI and mid portion of the stomach GST. Preoperative evaluation for tumor size and body weight is important. In patients with large GST, obesity and both end stomach GST, we think that pre-operative preparation for long operation time should be considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...